このブログの更新は Twitterアカウント @m_hiyama で通知されます。
Follow @m_hiyama

メールでのご連絡は hiyama{at}chimaira{dot}org まで。

はじめてのメールはスパムと判定されることがあります。最初は、信頼されているドメインから差し障りのない文面を送っていただけると、スパムと判定されにくいと思います。

参照用 記事

2-圏のなかのスパンのあいだの射

1-圏(通常の圏)のなかでスパンを考えた場合、スパンのあいだの射の定義は簡単です。2-圏のなかだと、スパンの射の定義も難しくなります。「環境付き計算と依存アクテゴリー 1/n // 2-圏内のスパンのあいだの射」で述べたように、1-圏と2-圏では事情が違っ…

環境付き計算と依存アクテゴリー 3/n

「環境付き計算と依存アクテゴリー 2/n」の続きです。$`\newcommand{\mrm}[1]{ \mathrm{#1} } \newcommand{\cat}[1]{ \mathcal{#1} } \newcommand{\In}{\text{ in }} %\newcommand{\u}[1]{\underline{#1}} %\newcommand{\twoto}{ \Rightarrow } \newcommand{…

環境付き計算と依存アクテゴリー 2/n

「環境付き計算と依存アクテゴリー 1/n」の続きです。$`\newcommand{\mrm}[1]{ \mathrm{#1} } \newcommand{\cat}[1]{ \mathcal{#1} } \newcommand{\In}{\text{ in }} %\newcommand{\u}[1]{\underline{#1}} %\newcommand{\twoto}{ \Rightarrow } \newcommand{…

環境付き計算と依存アクテゴリー 1/n

カプチ/マイヤース〈Matteo Capucci, David Jaz Myers〉の依存アクテゴリーは、アクテゴリーと二重圏の中間にある、ほど良い感じの概念的フレームワークです(「依存アクテゴリーが面白い」参照)。まだ定義さえハッキリしない状態ですが、僕は期待してます…

すべての随伴系達が作る構造は?

最近、二重圏に興味を持っています(「二重圏、縦横をもう一度」参照)。モナドや随伴には昔から興味を持っています。すべての随伴系〈adjunction〉達を二重圏、あるいは2-二重圏に組織化することを考えたことがあります。 随伴系の二重圏 (2019年) 2-二重圏…

依存型理論の圏論的セマンティクスの資料

「依存アクテゴリーに向けて」において: 当然に、アクテゴリーは依存アクテゴリーの事例となります。その他に良い事例はないでしょうか? 「最近の型理論: 拡張包括構造を持ったインデックス付き圏」で概要を述べた包括圏〈comprehension category〉が、依…

依存アクテゴリーに向けて

「依存アクテゴリーが面白い」という記事を書きました。実際僕は「面白い」と思っています。プロセスやシステムの記述と計算に使えそうだ、というところが心惹かれる理由でしょうかね。依存アクテゴリーはけっこう複雑な構造なので、定義を書き下すだけでも…

依存アクテゴリーが面白い

とあるキッカケがあって、マッテーオ・カプチとディビッド・ジャズ・マイヤースの講演アブストラクトを眺めてみました。 [CM23] Title: Constructing triple categories of cybernetic processes Authors: Matteo Capucci, David Jaz Myers Date: 2023/11/11…

ファイバーとシグマ構成

この記事は、他の記事で述べていなかった(抜け落ちていた)事項を説明します。他の記事(過去記事も含む)から参照することを目的にしています。$`\newcommand{\mrm}[1]{ \mathrm{#1} } \newcommand{\cat}[1]{ \mathcal{#1} } \newcommand{\In}{\text{ in }…

バンドル-ファミリー対応 再考

ファイバーの計算(「ファイバーの計算 基本概念」参照)において、バンドル-ファミリー対応は基本となる事実です。これは、スライス圏〈オーバー圏 | バンドルの圏〉とファミリーの圏が圏同値となることです。バンドル-ファミリー対応を短く書けば $`\mathc…

ファイバーの計算の動機としてのプルバック公式

ファイバーの計算に関する一連の記事(「ファイバーの計算 基本概念」参照)を書いているのですが、この記事は他の記事を参照しなくても(なるべく)独立に読めるようにします。ファイバーの計算は、関数のファイバー〈逆像〉に関する具体的な計算と、それを…

レベル付き林の圏

「木と林(有向グラフ)」より: 頂点〈ノード〉の高さと林/ツリーの高さは、関連してますが別な概念なので混同しないようにしましょう。 別な概念は別な名前を付けたほうがいいですね。$`\newcommand{\mrm}[1]{ \mathrm{#1} }\newcommand{\cat}[1]{\mathca…

木と林(有向グラフ) その2

「木と林(有向グラフ)」で、有向グラフの特別なものである木〈ツリー〉と林について述べました。(主に“ファイバーの計算”への)応用のためには、まだ必要なことが残っているので、そのまま続きと補足を書きます。$`\newcommand{\mrm}[1]{ \mathrm{#1} } \…

木と林(有向グラフ)

“ファイバーの計算”(「ファイバーの計算 基本概念」参照)に関する一連の記事のひとつとして、木と林の話を書き始めたのですが、独立した話題として扱えるので、シリーズ記事からは外れた記事にします。木と林は有向グラフの種類のことで、現実世界の植物の…

ファイバーの計算 幾つかの圏同値

“ファイバーの計算”に必要な幾つかの圏同値を示します。$`\newcommand{\mrm}[1]{ \mathrm{#1} } \newcommand{\hyp}{\text{-} } \newcommand{\In}{\text{ in }} \newcommand{\cat}[1]{\mathcal{#1}} \newcommand{\F}[1]{ {{#1}^{-1}} } % fiber \newcommand{…