2019-11-01から1ヶ月間の記事一覧
昨日、行きがかり上 という記号を導入しました。偏微分の記号 の分母と分子をひっくり返したものです。誰かこの記号を見たことありますか? (見たことある方は教えてくださいませ。) は の“逆”なのですが、偏微分作用素としての逆ではありません。線形代数…
取り急ぎのメモ。この記事で使う概念・記法は「ベクトルバンドル射の逆写像: 記法の整理をかねて」、「微分幾何におけるヤコビ行列の書き方: 因習の擁護」あたりに書いてあります。すべては「なめらかな世界」で考えます。NとMは多様体で f:N→M は写像とし…
多様体の一点での接ベクトルを定義する方法が幾つかあります。微分作用素としての定義は以前述べました。その他の方法二種類も記しておきます。内容: 三種類の接ベクトルの定義 座標依存方式 曲線方式 相互関係 三種類の接ベクトルの定義この記事に出てくる…
昨日の記事「ラムダ計算の自然性とお絵描き」で、ラムダ計算を行える〈do lambda calculus〉環境としてのモノイド閉圏を紹介しました。モノイド閉圏はカリー化を持ちます。カリー化に関わる素材と法則があれば、そこから指数随伴系〈テンソル・ホム随伴系〉…
タイトルの「自然性」は、国語辞書的な意味ではなくて、圏論の意味での自然性です。何が自然なのかというと、ラムダ計算の中核であるカリー化が自然だということです。なので、正確に言えば: ラムダ計算の中核であるカリー化は、圏論的な意味で自然である。…
昔は平気だったことでも、今では非難の対象になることは多々あります。時代が変われば、価値観・判断基準も変わるのでしょうがないですね。昔僕は、「これといった戦略もなく、気の利いた道具もなく、ただ力まかせに頑張る」ことを「ドカタ仕事」「ドカタ作…
伝統的(因習的)微分幾何の記法は、不合理の塊です。不合理な記法をやめられないのは、確かに便利だからです。xとyが多様体M上の2つの局所座標だとして、xからyへの座標変換のヤコビ行列(の成分)は、 と書きます。一方、f:M→N を多様体のあいだの(なめら…
MとNはなめらかな多様体で、なめらかな写像 f:M→N があるとします。fから、fと同じ方向に誘導された写像や関手を f* 、fと逆方向に誘導された写像や関手を f* と書く習慣があります。しかし、“誘導された写像や関手”(あるいは“構成された写像や関手”)は色…
思い付いた事があるんですが、ほっておくと忘れそうなので、ここに書いておきます。指標の一部をパラメータにするという行為が、いったい何をしているのだろう? この行為を合理的に説明する枠組みは何だろう? ということがずっと分からなくてモヤモヤして…
「モナドFのクライスリ圏は、F-自由代数の圏とみなせる」と言われます。おおよその状況は次のようです Fのクライスリ圏 F-自由代数の圏 ⊆ F-代数の圏 = Fのアイレンベルク/ムーア圏 この事実に対する正確な説明や実例をあまり見ないので(僕が目にしてない…
専門用語においても、同義語・類義語、表記のゆれなどは相当にあります。「こんな言い方もある、あんな言い方もある」と列挙していると、ときに長大なリストになってしまうことがあります。列挙する代わりに正規表現を使うとコンパクトに記述できます。正規…
構造、例えばモノイドを書き表すとき、どう書くか? 省略や記号の乱用も含めたルールをどうするか? 毎回悩みます。ある程度の方針を決めたいと思います。内容: 素材だけの指標 説明的な名前 インスタンスの書き方 追記 (翌日): もっとバリエーション さら…
過去の記事「リー微分は共変微分か? -- 代数的に考えれば」において、「リー微分は共変微分である」という間違ったことを書いていました。「間違った! リー微分は共変微分じゃない」に、間違いだと気付いた経緯が書いてありますが、その経緯はすごい回り道…
「リー微分は共変微分か? -- 代数的に考えれば」で、「リー微分も共変微分の一種だ」と書いたのですが間違いでした。リー微分は共変微分じゃないです。ごめんなさい。過去記事を読み直していてミスを見つけた、とかではなくて、別な計算をしているときに、…
「訂正予告: バンドルの圏とグロタンディーク平坦化」で予告したように、記事「ベクトルバンドル射の逆写像: 記法の整理をかねて」を修正しました。修正箇所は、次の1行だけです。 修正前: インデックス付き圏 VectBdl[-] のグロタンディーク平坦化圏が V…
昨日の記事「ベクトルバンドル射の逆写像: 記法の整理をかねて」で、記法を整理すると言いながら、未整理、あるいは曖昧なところがありました。当該記事に修正を入れるか、別記事(この記事ではない)で訂正します。なにがマズイかと言うと; ナントカバン…